نمونه‌گیری با احتمال ناپاره‌بندی در جامعه‌ی منتهاً وی رهیافتی چند متغیره

سمیعه جلالی‌زاده، عبدالحمید رضایی، رکن آبادی

چکیده

ساله‌های احتمالات انتخاب نرمال‌گیری چند متغیره‌ای از اهمیت ویژه‌ای برخوردار است. در این راستا هدف، می‌نویم

سری‌های انتخاب یک یا دو متغیره‌ای تحت مطالعه به طور هم‌زمان است. در واقع برای بدست آوردن جواب بهینه پارامتری، ماکریم خطا را می‌نیمیم که البته تقریبی یک ساله بهینه‌سازی را ارائه می‌نماییم. در این بحث ساله‌های مربوطه را در حالت با

جایگذاری برای نظر گرفتن دو معیار زیر به ساله می‌گوییم:

• میانگین سازی واریانس برآوردگر های هنسن– هریتز برای نسبت داده‌های اطلاعاتی اشتباه گزارش شده.

• واژه‌های کلیدی: ساله‌های چند متغیره، شيوه‌ی چند مصرفی، طرح فوایسون.

1. مقدمه

جامعه‌ای با N

و واحد i در نظر گرفته و فرض می‌کنیم

که در انتخاب صفت تحت مطالعه براї i این واحده

جامعه (N, i) = 1, 2, . . .

واحد جامعه برای عضویت در نمونه‌ی مفروض باشد.

دائم در نمونه‌ی گیری با احتمالات نابرابر، دادن احتمال به

واحد‌های شرکت در نمونه در واقع دادن وزن‌هایی است

که عمدتاً واریانس جامعه را تقلیل می‌دهد. در حالی که

یکسان بودن احتمال انتخاب واحدی، گاهی به حصول برآورد

هایی نظیر می‌شود که با وجود تاریب آگلب به دلیل

برگ‌بودن واریانس جامعه از واقعیت دورند. در واقع در این

نمونه‌گیری احتمال انتخاب واحد‌های جامعه برای شرکت در

نمونه ثابت نیست و معنی‌داری از واحدی را واحد دیگر تغییر

می‌کند. نمونه‌گیری تصویبی از احتمال نابرابر را می‌توان به

روش با جایگذاری و بدون جایگذاری اجرای داد. در روش

آشنایی با نظریه ویژه دانشکده علم تجربی– کرمه آمار

آشنایی فردوسی مشهدی– دانشکده علم ریاضی– کرمه آمار

ادانشکده آزاد اسلامی واحد مشهد– دانشکده علوم– کرمه آمار

Downloaded from neda.irat.net at 13:36 +0330 on Saturday March 14th 2020

2-تیپیستی مسالمه

فرض کنیم $U = \{U_1, U_2, ..., U_\nu\}$ جامعه ای متناهی باشد که به هر U_i واپسته است و یک بردار r مقداری به صورت $Y_i = (Y_{i1}, Y_{i2}, ..., Y_{in})$ در نظر می‌گیریم. جدول زیر مقادیر صفت های مورد بررسی و احتمالات انتخاب آن‌ها را نشان می‌دهد.

1 Carrizosa
در این صورت بردار میانگین‌ها که آن را با
دهیم، به صورت زیر است:

\[\mathbf{V} = (\hat{\mathbf{\mu}}, \ldots, \hat{\mathbf{\mu}}) \]

(1)

در اینجا متغیر‌های تصادفی \(Y_{ij} \) دو به دو مستقل با مقدار
مورد انتظار \(E(Y_{ij}) = \mu_{ij} < \infty \) و اریای متناهی \(\text{var}(y_{ij}) = E(Y_{ij}^2) - \mu_{ij}^2 = \sigma_{ij}^2 \geq 0 \)
شد و برای \(j = 1, \ldots, r \) و در آن \(j = 1, \ldots, N \) و \(i = 1, \ldots, n \)
تایپ ظاهر شده \(n \) در نمونه \(U_i \)

\[\sum_{i=1}^{N} Y_{ij} f_i = n \]

(2)

مورد استفاده قرار می‌دهم. با توجه به اینکه
متغیرهای تصادفی دارای توزیع \(f_i \sim B(n, \mu_{ij}) \),
و با توجه به آن و همچنین تابعه استقلال
برای \(j = 1, \ldots, r \) و در نتیجه

به دامین
بنابراین واریانس σ^2 به شکل معمول بودن Y_y به صورت $V(\hat{v}_i | (Y_{ij}, Y_{ij}, \ldots, Y_{ij})) = E_i \left(\frac{1}{N} \sum_{i=1}^{N} \frac{Y_{ij} f_i}{n \alpha_i} \right)^2 - \left(\frac{1}{N} \sum_{i=1}^{N} Y_{ij} \right)^2$

$= \frac{1}{N^2} \sum_{i=1}^{N} \frac{Y_{ij}^2}{N \alpha_i} - \frac{1}{N^2} \sum_{i=1}^{N} Y_{ij}^2$.

(9)

(شیبایی ذکر است امید و واریانس های شرطی را برای سهولت با نشان می‌دهم.)

برای بردار متغیر $\alpha = (\alpha_1, \ldots, \alpha_N) \in \Delta_N$ از احتمالات $
\epsilon_j(\alpha) = \epsilon_j(\alpha_1, \ldots, \alpha_N)$ استخراج شود و $
\epsilon_j(\alpha) = \epsilon_j(\alpha_1, \ldots, \alpha_N)$ در هر مرحله $
\epsilon_j(\alpha) = \epsilon_j(\alpha_1, \ldots, \alpha_N)$ تعیین شده، و توانایی هر انتظار در j را به عنوان متغیر تصادفی در نظر می‌گیریم و امید ریاضی برحسب طرح نمونه گیری و توزیع متغیر های Y_y به رابطه (7) و برای j مشخص به صورت زیر حاصل می‌شود:

$\epsilon_j(\alpha) = \epsilon_j(\alpha_1, \ldots, \alpha_N)$

$= E_i \left(\frac{1}{N} \sum_{i=1}^{N} Y_{ij} \right) - \frac{1}{N} \sum_{i=1}^{N} Y_{ij} f_i (n \alpha_i)$. $; j = 1, \ldots, r$

(8)

و بنابر استقلال دو به دو Y_y ها،

$\epsilon_j(\alpha) = \epsilon_j(\alpha_1, \ldots, \alpha_N)$

$= E_i \left(\frac{1}{N} \sum_{i=1}^{N} Y_{ij} \right) - \frac{1}{N} \sum_{i=1}^{N} Y_{ij} f_i (n \alpha_i)^2$

$= \frac{1}{N^2} \sum_{i=1}^{N} \frac{Y_{ij}^2}{N \alpha_i} - \frac{1}{N^2} \sum_{i=1}^{N} Y_{ij}^2$.

$= \frac{1}{N^2} \sum_{i=1}^{N} \mu_i^2 + \sigma_i^2 - \frac{1}{N^2} \sum_{i=1}^{N} \frac{\mu_i^2 + \sigma_i^2}{N \alpha_i}$.

(7)

حال یک بردار $\alpha = (\alpha_1, \ldots, \alpha_N) \in \Delta_N$ می‌پایه که همه X های کوچک متغیر در رابطه (7) را در نظر می‌گیرد.
نمونه‌گیری یکی از جایگذاری چند میزان یاد می‌آید که از روابط (11) به دست می‌آید. به مجموعه جواب‌های بهینه پارامتر ρ تعلق دارند.

ابتاه:

بنابراین به رابطه (14) در نظر گرفته می‌شود که این مشتق از α_i را با در نظرگرفتن جواب‌های بهینه و با استفاده از میزان پارامتر ρ به پرداخته‌ای می‌باشد. لازم به ذکر است که در این مورد، α_i به‌طور کلی می‌باشد.

$\frac{\partial^2}{\partial \alpha_i^2} e_j (\alpha_1, \ldots, \alpha_N) = \lambda_j \sum_{j=1}^{N} \frac{2}{\alpha_i} (\mu_i^2 + \sigma_i^2),$

که با توجه به میزان پارامتر ρ، این مشتق دوم اکیداً مشتق است. پس یک روش برای بهینه‌سازی یکناران به‌طور مشابه، به مجموعه جواب‌های بهینه پارامتر ρ تعلق دارد.

فرض 2:

در نمونه‌گیری چند، برای در نظر گرفتن پارامتر ρ، دارای یک دانسته می‌باشد. به‌طور کلی، α_i به‌طور کلی می‌باشد.

$e_j (\alpha_1, \ldots, \alpha_N) \in \Delta_N.$

توجه داشته باشید، که هر یک از α_i به‌طور کنونی در نظر گرفته می‌شود.

$e_j (\alpha_1, \ldots, \alpha_N) \leq e_j (\alpha_1^*, \ldots, \alpha_N^*), j = 1, \ldots, r$

نامساوی های بالا اکیداً باشند.

در نمونه‌گیری چند منظوره در نمونه گیری یکی از جایگذاری

$\lambda_1 = \lambda_2 = \ldots = \lambda_N = \frac{1}{N} n$

و

$\gamma_j = -\frac{1}{N^2 n} \sum_{i=1}^{N} (\mu_i^2 + \sigma_i^2); j = 1, \ldots, r$

(13)

بنابراین رابطه (8) نتیجه می‌شود.

$e_j (\alpha_1, \ldots, \alpha_N) = \lambda_j \sum_{i=1}^{N} \frac{\mu_i^2 + \sigma_i^2}{\alpha_i} + \gamma_j; j = 1, \ldots, r.$

(14)

فرض ساده‌ای نمایشده می‌باشد. تو این اساس قضیه ρ را به عنوان توصیف زیر فرم‌دهم می‌سازد:

$\lambda_1 = \lambda_2 = \ldots = \lambda_N = \frac{1}{N} n$

و

$\gamma_j = -\frac{1}{N^2 n} \sum_{i=1}^{N} (\mu_i^2 + \sigma_i^2); j = 1, \ldots, r$

(13)

بنابراین رابطه (8) نتیجه می‌شود.

$e_j (\alpha_1, \ldots, \alpha_N) = \lambda_j \sum_{i=1}^{N} \frac{\mu_i^2 + \sigma_i^2}{\alpha_i} + \gamma_j; j = 1, \ldots, r.$

(14)

فرض ساده‌ای نمایشده می‌باشد. تو این اساس قضیه ρ را به عنوان توصیف زیر فرم‌دهم می‌سازد:
درعمل یک مسئله قابل ارزیابی را در نظر می‌گیریم که در آن جامعه‌ای شامل N عضو مورد توجه قرار گرفته است. اگر x_i عدد این iامین جامعه را باشد و Z_i نامی در Z مشابه در Z_i باشد در این صورت $Z_i = X_i$. است این اگر $Z_i \neq X_i$ باشد در این صورت Z_i به به‌شماراند، مواجی مشابه X_i در آن

$$\alpha_i^* = \frac{\sqrt{(1-\omega)\mu + \omega \mu^2 X_i^2}}{\sum_{i=1}^{N} \sqrt{(1-\omega)\mu + \omega \mu^2 X_i^2}} \alpha_i^* = \sqrt{(1-\omega) + \omega X_i^2}$$

$$\Omega^i = \frac{1}{N} \; ; \; \omega = 0$$

$$\Omega^i = \frac{\sqrt{X_i^2}}{\sum_{i=1}^{N} \sqrt{X_i^2}} \; ; \; \omega = 1$$

$$\alpha_i^* \propto \sqrt{X_i^2}.$$ می‌توان مسئله چنین منظوره فوق را در شیوه نمونه‌گیری به روش بدون جایگذاری نیز مورد بررسی قرار داد و اگر با توجه به شیوه‌های مشابه این نوع نمونه‌گیری گزینه موضوع آینده این تحقیق را تشکیل می‌دهد.

توجه

مراجع