مودل سازی جریان رودخانه در با استفاده از مدل فرآیند پواسن فيلترشده

چکیده
در این مقاله به مدل سازی شدت جریان رودخانه در با استفاده از فرآیند پواسن فيلترشده می پردازیم. ابتدا حالت کلی را برای فرآیند در نظر گرفته و خواص نظری آن را به دست می آوریم. سپس با توجه به قطعه‌العملی تفاوت بین ضرایب همبستگی نمونه‌ای و نظری، مدلی مناسب برای داده‌های جریان رودخانه انتخاب کرد و به ارزیابی مدل می پردازیم.

واژه‌های کلیدی: فرآیند پواسن فيلترشده، مدل سازی، شدت جریان، رودخانه در

1- مقدمه
فرض کنید \(N(t) \) یک فرآیند پواسن با پارامتر \(\lambda > 0 \) و \(\lambda_0 \) یک مجموعه از متغیرهای \(Y_n \) تصادفی هم توزیع و مستقل باشند. همچنین فرض کنید \(N(t) \) باشد. فرآیند تصادفی \(X(t) \) را به صورت زیر تعریف می‌کنیم:

\[X(t) = \sum_{n=1}^{N(t)} W(t, \tau_n, Y_n) \]

به طوری که \(\tau_n \) یک زمان‌های رخداده فرآیند پواسن هستند.

به فرآیند پواسن فيلترشده معروف است. تابع \(X(t) \) تابع پاسخ نامیده می‌شود، بنابراین \(W(t, \tau_n, Y_n) = 0 \) آنگاه \(X(t) = 0 \) یا آنکه برای مدل سازی خطر بروز از این نوع پواسن تصادف می‌شود. \(\lambda \) را در نظر می‌گیریم.

2- خواص نظری فرآیند پواسن فيلترشده
در این بخش امید رضایی، ارزیابی، احتمال، مقادیر \(X(t) \) بررسی خواهد شد.

نظریت و امید رضایی شرطی \(t \) بررسی می‌شود.
با انجام محاسبات شبيه آن چه برای امید ریاضی انجام شد.

\begin{align*}
\text{دایریم: } Var[X(t)] &= \frac{2\lambda}{\mu^2} \left(\frac{c}{2} \right)^{2k+1} \gamma \left(2k + 1, \frac{2t}{c} \right); \quad k > -\frac{1}{2}.
\end{align*}

با انتگرال گیری جز خواص داشتیم:

\begin{align*}
Var[X(t)] &= \frac{2\lambda}{\mu^2} \left(\frac{c}{2} \right)^{2k+1} (2k)! [1 - e^{-\frac{2t}{c}} - \sum_{m=0}^{2k} \frac{1}{m!} \left(\frac{2t}{c} \right)^m],
\end{align*}

به طوری که \(2k \in \{0, 1, \ldots\} \) و در حالت خاص برای \(k = 0 \)

\begin{align*}
Var[X(t)] &= \frac{2\lambda c}{\mu^2} \left(1 - e^{-\frac{2t}{c}} \right),
\end{align*}

همچنین برای \(k = 1 \)

\begin{align*}
Var[X(t)] &= \frac{2\lambda c^2}{\mu^2} \left[\frac{c^2}{2} - \left(t + ct + c^2 \right) e^{-\frac{2t}{c}} \right].
\end{align*}

\(-3 \)- محاسبه کواريانس

به طور صریح می‌توان کواریانس \(X(t_2) \) و \(X(t_1) \) را حساب کرد.

\(-2 \)- فرضیه کواریانس

به صورت \(X(t_2) \) و \(X(t_1) \) فرضیه \(t_1 \leq t_2 \) را نیاز است:

\begin{align*}
\text{که در آن}
I_v &= \gamma(v + 1, -\frac{t_1}{c}) \\
&= \gamma(v + 1, \frac{2t_1}{c}) [1 - e^{-\frac{2t_1}{c}}],
\end{align*}

\begin{align*}
c_v &= \left(\frac{c}{2t_1} \right)^v \sum_{j=0}^{v} \binom{v}{j} \left(\frac{k}{j} \right) \left(\frac{k}{v-j} \right),
\end{align*}

به طوری که \(v \in \{0, 1, \ldots\} \).

\(-2 \)- مقدار مجانبی

برآورد پارامترهای محاسبه مدل. امید \(\lambda \) و \(\mu \) با استفاده از این واقعیت \(Y \) را وظیفه که \(t \) به سمت یک نهایی می‌کند. یعنی برایت در حالت مجانبی است، حساب می‌شود:

\begin{align*}
Var[X(t)] &= \lambda^2 \int_0^\infty E[W^2(t, \tau_n, Y)] d\tau,
\end{align*}

با استفاده از این واقعیت \(Y \) را وظیفه که \(t \) به سمت یک نهایی می‌کند. یعنی برایت در حالت مجانبی است، حساب می‌شود:

\begin{align*}
Var[X(t)] &= \lambda^2 \int_0^\infty (t - \tau_n)^k e^{-\frac{(t-\tau_n)}{c}} d\tau.
\end{align*}
\[X(t) + 1 \] ایمید شریطی (\(t + 1 \) به شرط \(X(t) + 1 \) در اینجا ایمید ریاضی مقدار انتظار فرآیند در زمان \(k \) به شرط که \(k \) در مدل با \(0 \) خواهیم داشت:

\[
E[X(t + 1)|X(t)] = E \left[\sum_{n:0 \leq t_n \leq t + 1} Y_n e^{-\frac{(t+1-t_n)}{c}} |X(t)\right] \\
= e^{-\frac{1}{c}} E \left[\sum_{n:0 \leq t_n \leq t} Y_n e^{-\frac{(t-t_n)}{c}} |X(t)\right] + e^{-\frac{1}{c}} E[X(t)|X(t)] + E[X(1)] \\
= e^{-\frac{1}{c}} X(t) + \frac{\lambda c}{\mu} \left(1 - e^{-\frac{1}{c}}\right). \tag{3}
\]

برای مدل با \(k = 1 \) مقدار ایمید شریطی به دانستن اطلاعات \(k \) بر اساس رابطه‌ای رابطه رابطه ای را نمایش می‌دهد. همچنین برای توجه به رابطه کوواریانس و ضریب همبستگی در اینجا می‌تواند رایت به دست آید.

همچنین مقدار میانگین میانگین و کوواریانس، از توجه به تابع اصلاح شده \(K_1 \) تابع با نرمالیتاده \(k \) به دست آمده است.

\[\lim_{k \to \infty} \var[X(t)] = \frac{2\lambda}{\mu^2} \left(\frac{\delta c}{2}\right)^{\frac{k+1}{2}} \Gamma(2k+1), \]

\[\lim_{k \to \infty} \text{Cov}[X(t)] = \frac{2\lambda}{\sqrt{\pi} \mu^2} \left(\frac{\delta c}{2}\right)^{\frac{k+1}{2}} \Gamma(2k+1) K_{\frac{k+\frac{1}{2}}{2}} \left(\frac{\delta c}{c}\right), \]

\[\lim_{k \to \infty} \rho_{X(t),X(t+\delta)} = \frac{1}{\sqrt{\pi}} \left(\frac{2\delta}{\delta c}\right)^{\frac{k+\frac{1}{2}}{2}} \Gamma(2k+1) K_{\frac{k+\frac{1}{2}}{2}} \left(\frac{\delta}{c}\right), \]

برای راحتی در محاسبات، با توجه به دست آمده مقداری ایمریاضی، واریانس و ضریب همبستگی به صورت زیر به دست می‌آید:

\[\lim_{k \to \infty} E[X(t)] = \begin{cases} \frac{\lambda c}{\mu} & k = 0, \\ \frac{\lambda c}{\mu^2} & k = 1. \end{cases} \]

\[\lim_{k \to \infty} \var[X(t)] = \begin{cases} \frac{\lambda c^2}{\mu^2} & k = 0, \\ \frac{\lambda c^2}{2\mu^2} & k = 1. \end{cases} \]

\[\lim_{k \to \infty} \rho_{X(t),X(t+\delta)} = \begin{cases} e^{-\frac{\delta}{c}} & k = 0, \\ (1 + \frac{\delta}{\mu^2}) e^{-\frac{\delta}{c}} & k = 1. \end{cases} \]
برای مدل با \(k = 1 \) نیز به طور مشابه داریم: \(\hat{c} = 1.53, \hat{\mu} = 0.147, \hat{\lambda} = 12.9 \).

در نتیجه مدل می‌شود:

\[
X(t) = \sum_{n=1}^{N(t)} Y_n(t - \tau_n) e^{-\frac{(t-\tau_n)}{1.53}}, \quad t > 0.
\]

(5)

\[
(X(t) = 0 \text{ در اگر } N(t) = 0)\]

3-2 انتخاب مدل

برای مقایسه مدل های گفته در قسمت قبل به دست آمده، مقایسه همبستگی نظری و تمونه ای برای هرکدام از مدل‌ها به دست آورده و قدرت‌طقای تفاصل آنها را مورد تفسیر قرار می‌دهیم.

جدول 1: ضرایب همبستگی نظری و تمونه ای مقایسه مقادیر جریان (\(X(t + \delta) \) و \(X(t) \)) برای 7 برای 7

<table>
<thead>
<tr>
<th>(\delta)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho(\delta))</td>
<td>0.86</td>
<td>0.75</td>
<td>0.64</td>
<td>0.55</td>
<td>0.47</td>
<td>0.37</td>
<td>0.25</td>
</tr>
<tr>
<td>(r(\delta))</td>
<td>0.86</td>
<td>0.82</td>
<td>0.78</td>
<td>0.75</td>
<td>0.74</td>
<td>0.71</td>
<td>0.64</td>
</tr>
<tr>
<td>(</td>
<td>\rho(\delta) - r(\delta)</td>
<td>)</td>
<td>0</td>
<td>0.08</td>
<td>0.11</td>
<td>0.17</td>
<td>0.23</td>
</tr>
</tbody>
</table>

برای مقادیر جریان \(X(t) \) و \(X(t + \delta) \) در 7 برای 7

\[k = 0 \]

جدول 2: ضرایب همبستگی نظری و تمونه ای مقایسه مقادیر جریان (\(X(t + \delta) \) و \(X(t) \)) برای 7 برای 7

<table>
<thead>
<tr>
<th>(\delta)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho(\delta))</td>
<td>0.86</td>
<td>0.72</td>
<td>0.64</td>
<td>0.57</td>
<td>0.47</td>
<td>0.37</td>
<td>0.25</td>
</tr>
<tr>
<td>(r(\delta))</td>
<td>0.86</td>
<td>0.82</td>
<td>0.78</td>
<td>0.75</td>
<td>0.74</td>
<td>0.71</td>
<td>0.64</td>
</tr>
<tr>
<td>(</td>
<td>\rho(\delta) - r(\delta)</td>
<td>)</td>
<td>0</td>
<td>0.08</td>
<td>0.11</td>
<td>0.17</td>
<td>0.23</td>
</tr>
</tbody>
</table>

برای مقادیر جریان \(X(t) \) و \(X(t + \delta) \) در 7 برای 7

\[k = 1 \]

\[
\frac{\hat{\lambda}}{\mu} = 0.096, \quad \hat{\lambda} = 22.9, \quad \hat{\mu} = 0.206.
\]
 tolerated اما به دلیل همبستگی کوتاه مدت از آن می‌توان فقط برای متوسط پیش بینی کوتاه مدت استفاده کرد.

منابع

در جدول 1 مقادیر ضریب همبستگی نظری و تمونه‌ای برای

\[k = 0 \]

\[X (t + \delta) \]

\[X (t) \]

امده است. با توجه به جدول مشاهده می‌شود که مقادیر همبستگی تمونه‌ای با افزایش کاهش می‌یابد و در مدت قدرم‌طلقو تفاصل آن ها افزایش می‌یابد.

جدول 2 مقادیر ضریب همبستگی را برای

\[k = 1 \]

\[X (t + \delta) \]

\[X (t) \]

نبان می‌دهد. توجه می‌کنم که در این مدل نیز با افزایش قدرم‌طلقو تفاصل افزایش می‌یابد. ولی از آن جا که قدرم‌طلقو تفاصل مقادیر همبستگی نظری و تمونه‌ای در مدل

\[k = 0 \]

\[k = 1 \]

نتیجه‌گیری که برای رودخانه شامل مدل فراکتال و بازسازی دوسته کرد.

\[k = 0 \]

\[k = 1 \]

برای پیش بینی شدت جریان در زمان‌های مختلف می‌توان از مدل استفاده کرد. همچنین با توجه به رابطه متوسط پیش بینی شدت جریان را می‌توان از رابطه خظی زیر محاسبه کرد:

\[E[X(t+1) | X(t)] = 0.86 X(t) + 28.78 \]

(2)

(3)

رابطه (2) همبستگی کوتاه مدتی را نشان می‌دهد و مقادیر پیش بینی خیلی زود به سطح ثابتی می‌رسد؛ یعنی مقادیر \[X(t+1) \] بعد از چند گام یکی می‌شوند.

\[X(t+1) \] و \[X(t) \]

4- 2- بیشینی

در این مقاله به معرفی فرآیند بواسن فیلترشده پرداخته شد و از آن برای مدل سازی تغییرات جریان رودخانه استفاده گردید. ابتدا فرم کلی این فرآیند به صورت رابطه (1) با تابع پاسخ کلی (2) در نظر گرفته شد. در نهایت با توجه به روابط حداکثر قدرم‌طلقو تفاصل ضریب همبستگی نظری و تجربی در دو جدول (1) و (2) مدل شدت جریان رودخانه در به صورت مدل (4) معرفی گردید که از آن می‌توان برای پیش بینی استفاده کرد. گرچه رابطه خظی (2) رابطه با ارزشی

(1)