مطالعه ای بر خواص طول عمر سیستم های k از متوالی

چکیده

یک سیستم k از شکست متواویخطی (c, k, n, F) سیستمی شامل n جزء است که روی یک خط مرتب شده اندازه و سیستم k از کار می‌افتند. اگر و فقط اگر k جزء متواوی آن از کار باشد، در این مقاله قابلیت اعتماد این سیستم ها و ویژگی های مربوط به آن در حالی که اجزای سیستم مستقل متوالی و همچنین وقت اجزاء سیستم به طور دلخواه وابسته اندازه و سیستم بررسی قرار می‌گیرد.

واژه های کلیدی: سیستم، متوالی، سیستم متواوی خطی، k.

۱- مقدمه

نمونه ای از کاربرد این سیستم‌ها در صنعت

سیستم‌های های لوله انتقال نفت که توسط چین‌گان و نیو [۳] معرفی شد: یک سیستم انتقال نفت به وسیله لوله ها از نقاط A به بخش B ایستگاه پمپهای انتقال شوند. و سیستم به سیستم انتقال آماده می‌شود و به هر قرار گرفته اندازه و سیستم انتقال‌های n از k شکست سیستم‌های لوله بالادست یاقت می‌شود.

۲- اصول انتقال نفت

نمونه ای از کاربرد این سیستم‌های L

از لوله های انتقال نفت که توسط چین‌گان و نیو [۳] معرفی شد: یک سیستم انتقال نفت به وسیله لوله ها از نقاط A به بخش B ایستگاه پمپهای انتقال شوند. و سیستم به سیستم انتقال آماده می‌شود و به هر قرار گرفته اندازه و سیستم انتقال‌های n از k شکست سیستم‌های لوله بالادست یاقت می‌شود.

۳- اصول انتقال نفت

در این قسمت ویژگی‌های قابلیت اعتماد سیستم‌ها را زمانی که اجزای سیستم مستقل و وقت اجزاء آن به طور دلخواه مطابق با محاسبه ی عظیم می‌باشد. و در این مقاله در واقع کاربرد این سیستم‌ها و ویژگی‌های مربوط به آن در حالی که اجزای سیستم مستقل متوالی و همچنین وقت اجزاء سیستم به طور دلخواه وابسته اندازه و سیستم بررسی قرار می‌گیرد.

واژه های کلیدی: سیستم، متوالی، سیستم متواوی خطی، k.

۴- نمونه ای از کاربرد این سیستم‌ها در صنعت

سیستم‌های های لوله انتقال نفت که توسط چین‌گان و نیو [۳] معرفی شد: یک سیستم انتقال نفت به وسیله لوله ها از نقاط A به بخش B ایستگاه پمپهای انتقال شوند. و سیستم به سیستم انتقال آماده می‌شود و به هر قرار گرفته اندازه و سیستم انتقال‌های n از k شکست سیستم‌های لوله بالادست یاقت می‌شود.

۵- اصول انتقال نفت

نمونه ای از کاربرد این سیستم‌های L

از لوله های انتقال نفت که توسط چین‌گان و نیو [۳] معرفی شد: یک سیستم انتقال نفت به وسیله لوله ها از نقاط A به بخش B ایستگاه پمپهای انتقال شوند. و سیستم به سیستم انتقال آماده می‌شود و به هر قرار گرفته اندازه و سیستم انتقال‌های n از k شکست سیستم‌های لوله بالادست یاقت می‌شود.

۶- اصول انتقال نفت

در این قسمت ویژگی‌های قابلیت اعتماد سیستم‌ها را زمانی که اجزای سیستم مستقل و وقت اجزاء آن به طور دلخواه مطابق با محاسبه ی عظیم می‌باشد. و در این مقاله در واقع کاربرد این سیستم‌ها و ویژگی‌های مربوط به آن درحالی که اجزای سیستم مستقل متوالی و همچنین وقت اجزاء سیستم به طور دلخواه وابسته اندازه و سیستم بررسی قرار می‌گیرد.

واژه های کلیدی: سیستم، متوالی، سیستم متواوی خطی، k.
تشریح دانشجویی آمار (ندا)-شماره اول-سال هفتم

باشند. که دارای تابع توزیع تجمعی

\[G_Q(t) = \sum_{i=1}^{n} \omega_i G_i(t) \]

است. تابع توزیع تجمعی طول عمر سیستم \((c, k, n; F)\) به صورت زیر است.

\[F_{k \text{ ln}F}(t) = \sum_{i=1}^{n} \omega_i G_i(t) \]

\[\omega_i = \frac{n_i}{n(n-1)(n-i+1)} \]

\[G_Q(t) = \sum_{i=1}^{n} \left(G_i'(t) \right) \left(1 - G_i(t) \right)^{n-i} \]

و نتایج قابلیت اعتماد سیستم \((c, k, n; F)\) در این حالت به رابطه است.

\[R_{k \text{ ln}F}(t) = P(T_{k \text{ ln}F} > t) = 1 - F_{k \text{ ln}F}(t) = 1 - \sum_{i=1}^{n} \omega_i G_i(t) \]

یعنی تابع توزیع تجمعی طول عمر سیستم به صورت ترکیب خطی از توزیع‌های آماری های تریپلی طول عمر‌های اجزای سیستم می‌باشد.

\[\begin{align*}
\text{میانگین باقی مانده} \text{ی عمر سیستم} &= \frac{1}{k} \left(\sum_{i=1}^{n} m_i \right) \\
\text{میانگین باقی‌مانده} \text{ی عمر سیستم} &= \sum_{i=1}^{n} m_i \\
\text{میانگین باقی‌مانده} \text{ی عمر سیستم} &= \sum_{i=1}^{n} m_i \\
\text{میانگین باقی‌مانده} \text{ی عمر سیستم} &= \sum_{i=1}^{n} m_i \\
\end{align*} \]

باشند. که دارای تابع توزیع تجمعی

\[G_Q(t) = \sum_{i=1}^{n} \omega_i G_i(t) \]

است. تابع توزیع تجمعی طول عمر سیستم \((c, k, n; F)\) به صورت زیر است.

\[F_{k \text{ ln}F}(t) = \sum_{i=1}^{n} \omega_i G_i(t) \]

\[\omega_i = \frac{n_i}{n(n-1)(n-i+1)} \]

\[G_Q(t) = \sum_{i=1}^{n} \left(G_i'(t) \right) \left(1 - G_i(t) \right)^{n-i} \]

و نتایج قابلیت اعتماد سیستم \((c, k, n; F)\) در این حالت به رابطه است.

\[R_{k \text{ ln}F}(t) = P(T_{k \text{ ln}F} > t) = 1 - F_{k \text{ ln}F}(t) = 1 - \sum_{i=1}^{n} \omega_i G_i(t) \]

یعنی تابع توزیع تجمعی طول عمر سیستم به صورت ترکیب خطی از توزیع‌های آماری های تریپلی طول عمر‌های اجزای سیستم می‌باشد.

\[\begin{align*}
\text{میانگین باقی مانده} \text{ی عمر سیستم} &= \frac{1}{k} \left(\sum_{i=1}^{n} m_i \right) \\
\text{میانگین باقی‌مانده} \text{ی عمر سیستم} &= \sum_{i=1}^{n} m_i \\
\text{میانگین باقی‌مانده} \text{ی عمر سیستم} &= \sum_{i=1}^{n} m_i \\
\text{میانگین باقی‌مانده} \text{ی عمر سیستم} &= \sum_{i=1}^{n} m_i \\
\end{align*} \]

باشند. که دارای تابع توزیع تجمعی

\[G_Q(t) = \sum_{i=1}^{n} \omega_i G_i(t) \]

است. تابع توزیع تجمعی طول عمر سیستم \((c, k, n; F)\) به صورت زیر است.

\[F_{k \text{ ln}F}(t) = \sum_{i=1}^{n} \omega_i G_i(t) \]

\[\omega_i = \frac{n_i}{n(n-1)(n-i+1)} \]

\[G_Q(t) = \sum_{i=1}^{n} \left(G_i'(t) \right) \left(1 - G_i(t) \right)^{n-i} \]

و نتایج قابلیت اعتماد سیستم \((c, k, n; F)\) در این حالت به رابطه است.

\[R_{k \text{ ln}F}(t) = P(T_{k \text{ ln}F} > t) = 1 - F_{k \text{ ln}F}(t) = 1 - \sum_{i=1}^{n} \omega_i G_i(t) \]

یعنی تابع توزیع تجمعی طول عمر سیستم به صورت ترکیب خطی از توزیع‌های آماری های تریپلی طول عمر‌های اجزای سیستم می‌باشد.

\[\begin{align*}
\text{میانگین باقی مانده} \text{ی عمر سیستم} &= \frac{1}{k} \left(\sum_{i=1}^{n} m_i \right) \\
\text{میانگین باقی‌مانده} \text{ی عمر سیستم} &= \sum_{i=1}^{n} m_i \\
\text{میانگین باقی‌مانده} \text{ی عمر سیستم} &= \sum_{i=1}^{n} m_i \\
\text{میانگین باقی‌مانده} \text{ی عمر سیستم} &= \sum_{i=1}^{n} m_i \\
\end{align*} \]
توجیه کند که این روابط برای سیستم های با اجزای وابسته به شرط آنکه دارای تابع توزیع مطلقا پیوسته و تبدیل پذیر باشند نیز برقرار است.

تابع RML تابع توزیع سیستم که دارای $G(t)$ است به صورت $T_{\text{MR}}(t)$ نمی‌تواند $T(t)$ را بی‌بندی نماید.

$F_{k,m}(t) = \frac{(n-k+1)G_{k}(t) - (n-k)G_{k+1}(t)}{G_{k+1}(t)}$

$G(t)$ مستقل و هم توزیع، با تابع $G_{k}(t)$. می‌باشد.

$M_{k}\text{MR}(t) = \frac{1}{n-k} [\prod_{i=1}^{n-k}(1-G(t))^{m_{k}(t)} - \prod_{i=1}^{n-k}(1-G(t))^{m_{k+1}(t)}]$

$G(t)$ مستقل و هم توزیع، با تابع $G_{k}(t)$. می‌باشد.

$M_{k}\text{MR}(t) = \frac{1}{n-k} [\prod_{i=1}^{n-k}(1-G(t))^{m_{k}(t)} - \prod_{i=1}^{n-k}(1-G(t))^{m_{k+1}(t)}]$

$G(t)$ مستقل و هم توزیع، با تابع $G_{k}(t)$. می‌باشد.

$M_{k}\text{MR}(t) = \frac{1}{n-k} [\prod_{i=1}^{n-k}(1-G(t))^{m_{k}(t)} - \prod_{i=1}^{n-k}(1-G(t))^{m_{k+1}(t)}]$

$G(t)$ مستقل و هم توزیع، با تابع $G_{k}(t)$. می‌باشد.
نتیجه دانشجوی آمار (ندا) - شماره اول - سال هفتم

3-2-1- میانگین باقیمانده عمر

با استفاده از روابط گفته شده برای تابع قابلیت اعتماد سیستم، ها در این حالت، نتای میانگین باقیمانده برای آنها عبارت است از:

\[m_{\text{k inof}}(t) = \frac{1}{R_{\text{k inof}}(t)} \int R_{\text{k inof}}(s) ds \]

\[m_{\text{p inof}}(t) = \sum_{i=k}^{n} \frac{m_{\text{p inof}}(i)}{R_{\text{p inof}}(i)} \]

۳-2-1- متوسط طول عمر سیستم

\[\mu_{\text{k inof}} = E(T_{\text{k inof}}) = \int_0^\infty P(T_{\text{k inof}} > t) dt = \int_0^\infty \sum_{i=k}^{n} [P(T_{\text{i inof}} > t)] dt \]

\[R_{\text{k inof}}(t) = 1 - (n - k + 1)P(T_{\text{1 inof}} \leq t) + (n - k)P(T_{\text{1 inof}} \leq t) \]

\[A_{\text{p}}(i, k) = 1 - P(T_{\text{i inof}} \leq t) - P(T_{\text{i inof}} \leq t) + P(T_{\text{i inof}} \leq t) + P(T_{\text{i inof}} \leq t) \]

\[B_{\text{p}}(i, k) = 1 - P(T_{\text{i inof}} \leq t) + P(T_{\text{i inof}} \leq t) \]

3-2-2- نرخ خطر

تعریف: نرخ خطر متغیر تصادفی \(T \) که آن را با \(\lambda(t) \) نشان می‌دهیم به صورت زیر تعریف می‌شود:

\[\lambda(t) = \lim_{\Delta \to 0} \frac{P(t < T \leq t + \Delta)}{\Delta} = \lim_{\Delta \to 0} \frac{\Delta}{\Delta} \]

3-2-2- نرخ خطر

تعریف: نرخ خطر متغیر تصادفی \(T \) که آن را با \(\lambda(t) \) نشان می‌دهیم به صورت زیر تعریف می‌شود:

\[\lambda(t) = \lim_{\Delta \to 0} \frac{P(t < T \leq t + \Delta)}{\Delta} = \lim_{\Delta \to 0} \frac{\Delta}{\Delta} \]

3-2-2- نرخ خطر

تعریف: نرخ خطر متغیر تصادفی \(T \) که آن را با \(\lambda(t) \) نشان می‌دهیم به صورت زیر تعریف می‌شود:

\[\lambda(t) = \lim_{\Delta \to 0} \frac{P(t < T \leq t + \Delta)}{\Delta} = \lim_{\Delta \to 0} \frac{\Delta}{\Delta} \]

3-2-2- نرخ خطر

تعریف: نرخ خطر متغیر تصادفی \(T \) که آن را با \(\lambda(t) \) نشان می‌دهیم به صورت زیر تعریف می‌شود:

\[\lambda(t) = \lim_{\Delta \to 0} \frac{P(t < T \leq t + \Delta)}{\Delta} = \lim_{\Delta \to 0} \frac{\Delta}{\Delta} \]

3-2-2- نرخ خطر

تعریف: نرخ خطر متغیر تصادفی \(T \) که آن را با \(\lambda(t) \) نشان می‌دهیم به صورت زیر تعریف می‌شود:

\[\lambda(t) = \lim_{\Delta \to 0} \frac{P(t < T \leq t + \Delta)}{\Delta} = \lim_{\Delta \to 0} \frac{\Delta}{\Delta} \]

3-2-2- نرخ خطر

تعریف: نرخ خطر متغیر تصادفی \(T \) که آن را با \(\lambda(t) \) نشان می‌دهیم به صورت زیر تعریف می‌شود:

\[\lambda(t) = \lim_{\Delta \to 0} \frac{P(t < T \leq t + \Delta)}{\Delta} = \lim_{\Delta \to 0} \frac{\Delta}{\Delta} \]

3-2-2- نرخ خطر

تعریف: نرخ خطر متغیر تصادفی \(T \) که آن را با \(\lambda(t) \) نشان می‌دهیم به صورت زیر تعریف می‌شود:

\[\lambda(t) = \lim_{\Delta \to 0} \frac{P(t < T \leq t + \Delta)}{\Delta} = \lim_{\Delta \to 0} \frac{\Delta}{\Delta} \]

\[R_{k_1n,F}(t) = \frac{1}{1-p(t(U_{k_1}^{n}) + p(t(U_{k_1}^{n}) + U_{k_1}^{n})^{n-k-1}} \]

\[\text{که اگر توزیع توأم (} T_1, T_2, ..., T_n \text{) تبدیل یکپارچه باشد، رابطه به صورت زیر در میآید:} \]

\[R_{k_1n,F}(t) \approx \frac{1}{1-p(t(U_{k_1}^{n}) + p(t(U_{k_1}^{n}) + U_{k_1}^{n})^{n-k-1}} \]