مطالعه ای بر خواص طول عمر سیستم های \(k \) از متوالی \(n \) می‌تواند به‌صورت در ساخته شده‌های دیگر علوم از جمله سیستم‌های انتقال نفت و پرتابان‌های کامپوزیت‌های قاروایی دارد و به‌همین دلیل قابلیت استفاده آن توسط محققان زیادی مورد مطالعه قرار گرفته است. سیستم‌های بررسی شده از میان می‌تواند حاصل مطالعه قرار می‌گیرد و اینکه که سیستم‌های مزیت سیستم‌ها و سیستم‌های از میان کار می‌گیرد.

1- مقدمه

نمونه‌ای از کاربرد این سیستم‌ها در صنعت سیستم‌های \(n \) از متوالی در ساخته شده‌های دیگر علوم از جمله سیستم‌های انتقال نفت و پرتابان‌های کامپوزیت‌های قاروایی دارد و به‌همین دلیل قابلیت استفاده آن توسط محققان زیادی مورد مطالعه قرار گرفته است.

2- نمونه‌ای از کاربرد این سیستم‌ها در صنعت

سیستم‌های انتقال نفت که توسط چیپنگ و نیو [3] معرفی شد. بی‌کیفیت سیستم‌های انتقال نفت به سیستم‌های \(n \) درباره \(A \) است. بی‌کیفیت سیستم‌های انتقال نفت به سیستم‌های \(B \) است. بی‌کیفیت سیستم‌های انتقال نفت به سیستم‌های \(C \) است. بی‌کیفیت سیستم‌های انتقال نفت به سیستم‌های \(D \) است. بی‌کیفیت سیستم‌های انتقال نفت به سیستم‌های \(E \) است. بی‌کیفیت سیستم‌های انتقال نفت به سیستم‌های \(F \) است.

3- ویژگی‌های قابلیت اعتمادی

در این قسمت ویژگی‌های قابلیت اعتماد سیستم‌ها را زمانی که اجزای سیستم مستقل و وقتی اجزای آن به طور دلخواه

چکیده

یک سیستم \(k \) از \(n \) که شکست متواشیل خطي (c, k, n; F) سیستم‌شی شمار \(n \) جزء است که روی یک خط مرتب شده اند و سیستم \(k \) از کار می‌انجامد. اگر فاکتور از کار باشد، در این مقاله قابلیت اعتماد این سیستم‌ها و ویژگی‌های مربوط به آن در حالت که اجزای سیستم مستقل اند و همچنین وقتی اجزای سیستم به طور دلخواه وابسته اند مورد بررسی قرار می‌گیرد، به‌عنوان های کلیدی: سیستم \(n \) از کاربرد اعتماد، سیستم موازی سیستم سری.

46

1- نامنوشته دانشجوی آمار (نداره) شماره اول - سال هفتم

3انشجوعی کارشناسی ارشد گروه آمار دانشگاه اصفهان

57
اسانیت برای ایجاد توزیع تجربی $G(t)$ از $G_0(t)$ است. تابع توزیع تجربی طول عمر سیستم به صورت زیر است.

$$F_k(t) = \sum_{i=1}^{n} \omega_i G(t)$$

$$\omega_i = \frac{r_i}{m(n-1)...(n-i+1)}$$

$$G_0(t) = \sum_{i=1}^{n} \left(\frac{G_i(t)}{G_i(0)} \right)^{n-i}$$

و با این قابلیت اعتماد سیستم در این حالت برای استفاده $R_k(t) = P(T_k \geq t) = 1 - F_k(t)$

$$R_k(t) = 1 - \sum_{i=1}^{n} \omega_i G_i(t)$$

برای تابع توزیع طول عمر سیستم به صورت ترکب خطی از توزیع های آماره‌ای ترتیب طول عمرهای اجزای سیستم می‌باشد.

n از k میانگین باقیمانده‌ی عمر سیستم از t:

1. باقیمانده‌ی عمر سیستم: اگر طول عمر یک سیستم T باشد، شرط اینکه باشد و باقیمانده‌ی عمر سیستم $m(t)$ را با نام $m(t)$ نامیده و تقسیم می‌شود.

$$m_k(t) = E(T - t | T > t)$$

میانگین واژیتی اعتماد و تخلیه بین دارد و اگر $R_k(t)$ تقسیم باشد، آنگاه $m(t)$ نمی‌باشد.

$$m_k(t) = \frac{\int_0^t m(t) \, dt}{R_k(t)}$$

2. میانگین باقیمانده‌ی عمر (MRL): این تابع به صورت $m_k(t)$ را با نام $m_k(t)$ نامیده و تقسیم می‌شود.

$$m_k(t) = \frac{\sum_{i=1}^{n} \omega_i R_k(t) \sum_{i=1}^{n} \omega_i m_k(t)}{\sum_{i=1}^{n} \omega_i R_k(t)}$$

$R_k(t) = P(T_k \geq t) = 1 - \sum_{i=1}^{n} \omega_i G_i(t)$

برای تابع توزیع طول عمر سیستم به صورت ترکب خطی از توزیع های آماره‌ای ترتیب طول عمرهای اجزای سیستم می‌باشد.

$$r_{mk} = \frac{(n - m)(m - 1)}{n} \times \sum_{i=1}^{n} \left(\frac{n-m+i}{n-m} \right) \left(\frac{n-m-i}{n-m} \right)$$

$$m_i \sum_{i=1}^{n} \left(\frac{n-m+i}{n-m} \right) \left(\frac{n-m-i}{n-m} \right) ,$$

$$n \geq m \geq k \geq 1$$

3. فرض کنید T_k طول عمر جزء k از t می‌باشد و میانگین باقیمانده‌ی دوره‌ای $m(t)$، $r_k(t)$ توزیع تجربی $G(t)$ از $G_0(t)$ می‌باشد.

$$T_k(t) \leq T(t) \leq \cdots \leq T_0$$

$$T_k \leq T_k(t) \leq \cdots \leq T_0$$

T_0 باشد.
توپوجه کنید که این روابط برای سیستم‌های با اجرای وابسته به شرط آنکه تابع تویزی نظر نمایه است.

\[
F_k \text{linF}(t) = (n - k + 1)G_{k,k}(t) - (n - k)G_{k+k+n+1}(t)
\]

\[
G(t) = \text{متنقل و مهم تویزی با } G(t) \text{ می‌باشد.}
\]

\[
m_{\text{MRF}}(t) = \frac{1}{(n-k+1)G_k(t)}[M_{k+k+n+1}(t) - m_{k+k+n+1}(t)]
\]

\[
T_{\text{MRF}}(t) = \max(T_i, T_{i+1}, ..., T_m), i \leq m
\]

\[
P(T_{m-k+n+1} > t) = P(T_{m-k+n+1} > t) = P(T_{m-k+n+1} > t)
\]

\[
\text{و واضح است که اگر تویزی نیامدی باشد، مقادیر بالا به راحتی قابل محسسه‌ای ندارد.}
\]

\[
\text{در حالی که اگر تابع تویزی نیامدی باشد، باید سیستم‌ها مستقل باشند.
\]

\[
\text{مجموعه‌ای} \{Y_1, Y_2, ..., Y_n\} \text{ داشته باشیم:}
\]

\[
P(T_{m-k+n+1} > t) = P(T_{m-k+n+1} > t) = P(T_{m-k+n+1} > t)
\]

\[
\text{و واضح است که اگر تویزی نیامدی باشد، باید سیستم‌ها مستقل باشند.
\]

\[
\text{مجموعه‌ای} \{Y_1, Y_2, ..., Y_n\} \text{ داشته باشیم:}
\]

\[
P(T_{m-k+n+1} > t) = P(T_{m-k+n+1} > t) = P(T_{m-k+n+1} > t)
\]
نتیجه دانشجوی آمار (ندا) - شماره اول - سال هفتم

با استفاده از روابط گفته شده برای نابع قابلیت اعتماد سیستم، نتایج می‌باشد:

\[m_{k \text{ inf}}(t) = \frac{1}{R_{k \text{ inf}}(t)} \times \sum_{i=k}^{n} \left[R_{i \text{ inf}}^{(i-k+u+1)}(t) \cdot m_{i \text{ inf}}(t) - R_{i \text{ inf}}^{(i-k+1)}(t) \cdot m_{i \text{ inf}}(t) \right] \]

\[m_{p \text{ inf}}(t) = \frac{1}{R_{p \text{ inf}}(t)} \times \sum_{i=k}^{n} \left[R_{i \text{ inf}}^{(i-k+u+1)}(t) \cdot m_{i \text{ inf}}(t) - R_{i \text{ inf}}^{(i-k+1)}(t) \cdot m_{i \text{ inf}}(t) \right] \]

\[\mu_{k \text{ inf}} = \frac{(n - k + 1)E(T^{(u)})}{(n - k)E(T^{(u+1)})} \]

\[r(t) = \lim_{n \to \infty} \frac{f(X(t)=i)}{g(\alpha(t))} = \frac{f(t)}{\beta(t)} \]

\[R_{k \text{ inf}}(t) = 1 - \left[(n - k + 1)P(T^{(u)} > t) + (n - k)P(T^{(u+1)} > t) \right] \]

\[A_{k}(i, k) = 1 - P(T^{(i-k+u+1)} > t) + P(T^{(i-k+1)} > t) \]

\[B_{k}(i, k) = 1 - P(T^{(i-k+u+1)} > t) + P(T^{(i-k+1)} > t) \]

\[\mu_{k \text{ inf}} = \frac{\sum_{i=k}^{n} \left[f(T^{(i-k+u+1)}(t)) - f(T^{(i-k+1)}(t)) \right]}{R_{k \text{ inf}}(t)} \]

\[\rho_{k \text{ inf}}(t) = \frac{f(T^{(i-k+u+1)}(t))}{R_{k \text{ inf}}(t)} \]

\[E(T^{(u+1)}) = . \]

و اگر نابع توزیع توان \((T_1, T_2, ..., T_n)\) با پیکر استفاده کار ساده‌ای نیست، به هنگام دیل به دلیل مشابه در نظرگیری ی قابلیت اعتماد باید کردن کران‌های و تقریب‌پذیری برای قابلیت اعتماد سیستم‌ها باشد.

در قسمت های قبل فرمولهای دقیق برای محاسبه ی قابلیت اعتماد سیستم‌های خاص به (c, k, n: F) با اجزای وابسته در حالت n ≤ k، به دلیل وابستگی بین اجزای سیستم با n > k برای محاسبه‌ای دقیق به کار می‌رود. به‌طور منطقی می‌توانیم دقیق برای آن به دست آوریم. از این رو به معرفی تقریب‌پذیری می‌پردازیم که برای هر کاربرد دارد.

\[R_{k\text{ in} F}(t) = \left[1 - p(t | U_{k} = t) + p(t | U_{k} = t) \right]^{n-k+1} \]

\[\frac{1 - p(t | U_{k} = t) + p(t | U_{k} = t)}{1 - p(t | U_{k} = t) + p(t | U_{k} = t)} \]

- بحث و نتیجه‌گیری

در این مقاله ویژگی‌های قابلیت اعتمادی سیستم \((c, k, n: F)\) در دو حالت

1- سیستم با اجزای مستقل

2- سیستم با اجزای به طور دخوار وابسته بحث شد.

در هر حالت فرمول‌های دقیق بیای تابع ناامیده متوسط طول عمر سیستم، نرخ خطر و میانگین باقیمانده عمر ارائه شد.

در حالت که اجزای سیستم وابسته اند، فرمول‌ها فقط برای \(n \leq \frac{1}{2} \) برقرار است، به همین دلیل تقریبی بیای تابع \(1 \leq k \leq n \) کاربرد دارد. در این حالت باید بر اساس استفاده از دنیال‌های دوگانه و توزیع آنها می‌باشد و وقتی توزیع طول عمر هر اجزای مشخص باشد محاسبات به راحتی انجام می‌شود.

فرمول‌های ارائه شده در این مقاله را می‌توان برای حالتی که توزیع طول عمر اجزای سیستم به‌طور هم‌نوعی و دلخواه است، مانند نمایی با تابع باینری چند متغیری به کار بردن نمود. حاصلی روز توزیع اجزای ندارند. برای جزئیات و بررسی بیشتر این موضوع می‌توانید به [7, 5, 1, 6] پرداخت.

[۸] مراجعه کنید.

 REFERENCES

